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Introduction 
As known, the scanning and computerized process-
ing of images had started in 1956 at the U.S. Na-
tional Bureau of Standards. At this time, the design 
of the image enhancement algorithms had begun 
[1]. Sixty years later, thousands of various image 
processing algorithms have been developed. Some 
of them have been specific to certain applications 
(such as the enhancement of latent fingerprints), 
whereas the others have been more generic in na-
ture, often without information on their best appli-
cation area. The scope of these algorithms is rather 
large: from automatically extracting and depicting 
regions of interest such as in the case of segmen-
tation, to improving the perceived quality of an im-
age by image enhancement methods. Since the early 
years of computer vision (as in the other subfields 
of software design), a part of the design process 
has been dedicated to algorithm testing. Such test-
ing serves a double purpose. Firstly, it gives either a 
qualitative or quantitative method of evaluating an 
algorithm. Secondly, it provides a comparative mea-
sure of the algorithm against similar algorithms in 
terms of the same criteria. The design and choice of 
proper criteria of evaluation is a difficult task. Do 
we use a criterion which measures accuracy, robust-
ness, or sensitivity? Performance evaluation, in a 
broad sense, is a measure of some required behavior 

of an algorithm, whether it is achievable accuracy, 
robustness and adaptability. It allows one to empha-
size the most essential properties of an algorithm, to 
evaluate its advantages and limitations. The analysis 
of algorithm’s failures is closely related to such eval-
uation. This analysis primarily requires a definition 
of characteristics of success. Such failure analysis, 
during the design stage of an algorithm is of high 
importance. In this case, it can be considered as ini-
tial testing.
This thorough testing has not yet become a com-
mon practice. Part of this is attributable to the lack 
of formal process used in performance evaluation, 
from the establishment of testing regimes to the 
design of performance metrics. Also, in the last 
half-century, different approaches to performance 
evaluation of image processing algorithms have 
been poorly covered in the literature. At the same 
time, it should be noted that the choice of an ap-
propriate evaluation methodology depends on the 
objective of the task.
As noted in [2], the purpose of evaluating an al-
gorithm is to understand its behavior on different 
categories of images and help in choosing the best 
parameters for different applications. In its final 
stage this involves some comparison with similar al-
gorithms in order to provide practical guidelines for 
choosing algorithms on the basis of application do-
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main. Accessing the performance of any algorithm 
depends on several factors [3]:

■■ the algorithm itself,
■■ the nature of images used to measure the perfor-

mance of the algorithm,
■■ the algorithm parameters used in the evaluation,
■■ the method used for evaluating the algorithm.

The difficulty in evaluating of an algorithm is di-
rectly proportional to the number of parameters 
it requires. For the purpose of performance opti-
mization, a certain selection of parameters is re-
quired, which is not an easy task by itself. Besides 
that, the optimal parameters may vary on differ-
ent test images. As to the influence of test images 
on performance evaluation accuracy, evaluation 
with a set of “easy” images may often produce a 
higher accuracy than the use of images containing 
difficult objects or situations.
Nowadays there are no rigid guidelines charac-
terizing the process of performance evaluation, 
however there are a number of factors to be con-
sidered: testing protocol, testing regime, perfor-
mance indicators, performance metrics and image 
[4]. The testing protocol relates to the successive 
approach used to perform testing. Next is the test-
ing regime which relates to the strategy used for 
testing the images. There are four main testing 
categories. The first of these is exhaustive test-
ing, which is a crude approach to testing based 
upon the use of every image in a database. Such 
an approach can be excessive and should be lim-
ited to the verification stage of the design pro-
cess. Next is boundary value testing which evalu-
ates an algorithm on a pre-defined representative 
subset of the database images. The third regime 
is random testing in which images are indis-
criminately selected. Compared with the previ-
ous case, under this testing regime more diverse 
situations may occur, because boundary-value 
testing deals with subjective selection of images 
which might not take into account the diversity 
of practical situations. For example, it is realis-
tic to test a mass-detection algorithm on a data-
base of mammograms containing mainly images 
with malignant masses, whereas clean mammo-
grams or mammograms with benign masses are 
predominant in practice. The fourth test regime 
concerns worst-case testing. It mainly focused 
on the situations when the test image contains 
rare or unusual features. 
Performance indicators specify the qualities of an 
algorithm. They are often loose characterizations 
and in themselves are difficult to measure. Typical 
performance indicators are [4]:

■■ Accuracy: how well the algorithm has performed 
with respect to some reference.

■■ Robustness: an algorithm’s capacity for tolerating 
various conditions.

■■ Sensitivity: how responsive an algorithm is to small 
changes in input data.

■■ Adaptivity: how the algorithm deals with variabil-
ity of images.

■■ Reliability: the degree to which the algorithm, 
when repeated using the similar data, yields the sim-
ilar results.

■■ Efficiency: the practical viability of an algorithm 
(convenience, cost, modifiability, etc.).
Finally there is the notion of image database: which 
images should be selected to test an algorithm. This 
relates to the diversity and complexity of the selected 
images and the significance of the images to the algo-
rithm’s purpose (e. g. segmentation or edge detection).

1. Current evaluation methods
As mentioned above, by now, thousands of image 
processing algorithms have been proposed. Many of 
them have multiple software implementations (some 
of them are available in the public domain, like e. g. 
the famous Canny edge detector). As a result, the 
developer of computer vision system faces a difficult 
task of choosing the most appropriate algorithms for 
his practical purposes.
Due to the above reasons, testing of image process-
ing algorithms for practical purposes has no unique 
method. The main differences between the methods 
used for comparative evaluation of algorithms of the 
same class (e. g. edge detectors, segmentation algo-
rithms, texture finders, etc.) are the following:
- different sets of test images which differ both in the 
type of images (real or synthesized) and in the size, 
amount and their sources (user-created or from an 
available database );
- different procedures of choosing the optimal pa-
rameters of the algorithms;
- different evaluation criteria (quantitative or quali-
tative, using reference images or not).
To date, several attempts to classify these methods 
have been made. In [5] the following classification 
of evaluation methods for image segmentation algo-
rithms has been offered:
1. subjective evaluation
2. objective evaluation
2.1. system level evaluation
2.2. direct evaluation
2.2.1. analytical methods
2.2.2. empirical methods
2.2.2.1. supervised methods
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2.2.2.2. unsupervised methods.
In principle, such classification is appropriate to clas-
sify evaluation methods for another class of algorithms 
(e. g. edge detectors).
The most widely used type of evaluation method is 
subjective (or visual) evaluation. The disadvantage of 
such methods (reflected in their name) is that visu-
al or qualitative evaluation is inherently subjective. 
Subjective evaluation scores may vary significantly 
from one human evaluator to another.
Objective evaluation methods do not use visual 
assessment of images. They are divided into sys-
tem level evaluation methods and direct evaluation 
methods.
System level evaluation methods assess an algo-
rithm on the basis of overall performance of the 
computer vision system which contains this algo-
rithm. We mention, as an example, the work of Shin, 
Goldgof and Bowyer [6] which presents a task-ori-
ented evaluation methodology for edge detectors. 
Such assessment does not necessarily indicate the 
flaws in the algorithm itself; it may indicate the al-
gorithm, which output is most suitable for further 
processing.
The direct objective evaluation can be divided into 
analytical methods and empirical methods, based on 
whether the algorithm itself, or the results generat-
ed by the algorithm are being examined.
Analytical methods assess algorithms independently 
of their output [7]. The evaluation is based on such 
properties of the algorithms as processing strategy 
(parallel, sequential, iterative or mixed), processing 
complexity, resource efficiency, etc. These proper-
ties are generally independent of the quality of the 
algorithm’s results Analytical methods considered 
in literature usually deal with some special tasks 
(see e. g. [8]).
On the contrary, empirical methods assess the results 
of the algorithm on a set of test images. They are di-
vided into supervised and unsupervised methods.
Supervised methods are also known in literature 
as empirical discrepancy methods (see e. g. [9]). 
The latter definition is probably more appropri-
ate, since such methods perform a comparison 
between a processed image (algorithm’s output) 
against a reference image which is often referred 
to as a ground-truth, by using discrepancy mea-
sures. The ground truth images are often manual-
ly created and contain the features which are ide-
al from the evaluator’s viewpoint. For instance, 
if we evaluate the edge detectors, then for every 
test image there is a matching ground truth image 
containing ideal (user-defined) edges. A situa-
tion is possible when we study several features of 

each algorithm. In this case, several ground truths 
may correspond to a single test image (see also 
[23]). In most cases, such methods can provide a 
fair evaluation. However, for many test images the 
creation of matching ground truths is labor-inten-
sive (e. g. in case of segmentation of real-world 
images) and is subjective.
Unsupervised (or goodness [9]) methods evaluate 
a processed image based on how well it matches 
some set of characteristics as desired by humans. 
Perhaps the most distinct advantage of unsuper-
vised evaluation is that it requires no reference im-
age. This feature enables to perform control and 
self-learning in real time systems.
One of the key elements of comparative evalu-
ation methods, are their criteria of evaluation 
(also called as performance criteria, perfor-
mance metrics, performance measures, perfor-
mance indices [10]).
Our paper mainly deals with the empirical su-
pervised evaluation methods. In particular, in 
next section we consider the quantitative per-
formance measures, which are mainly used for 
performance evaluation of edge detection algo-
rithms, discuss their application features and 
their disadvantages. Then we analyze the main 
criteria for evaluating the image segmentation 
algorithms. In section 4 we consider our meth-
od EDEM for comparative evaluation of image 
processing algorithms implemented within the 
program system PICASSO. We demonstrate the 
principles of our approach considering evalua-
tion of edge detectors.
Before considering the available quantitative 
performance measures, used for evaluation of 
a certain class of image processing algorithms, 
it is desirable to formulate the requirements for 
their output images. For example, for the case 
of image segmentation algorithms, such re-
quirements (in the form of qualitative criteria) 
have been formulated in [11] (see section 3). In 
most cases the evaluator tries to find the mea-
sures most suitable for the achievement of these 
objectives.

2. Quantitative performance  
criteria for edge detectors

It is agreed that the main requirements for the edge 
detection algorithms were first formulated by J. 
Canny in his classical work [12]. The author first 
managed to define a comprehensive set of goals for 
the computation of edge points, to formulate them 
in the form of a certain optimization problem, and, 
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finally, to solve this problem. According to Canny, 
these requirements (or performance criteria) are as 
follows:
1. Good signal-to-noise ratio. There should be a 
high probability of failing to mark real edge points, 
and low probability of falsely marking non-edge 
points.
2. Good localization. The points marked as edge 
points by the detector should be as close as possi-
ble to the center of the true edge.
3. Only one response to a single edge. This is im-
plicitly contained in the first criterion (if there are 
two responses to the same edge, one of them must 
be considered false). However, the mathematical 
form of the criterion does not capture the multi-
ple response requirement and it has to be made 
explicit.
J. Canny considered the mathematical problem of 
deriving an optimal smoothing filter (performing 
a preprocessing stage in edge detection) given the 
above criteria. He showed that this filter is a sum of 
four exponential terms, and that it can be well ap-
proximated by first-order derivatives of Gaussians. 
Although the work of Canny was done in the early 
days of computer vision, his edge detector is still 
among the best and mostly used ones.
The Canny’s requirements for a “good” edge detec-
tor may be considered as an example of require-
ments mentioned at the end of the previous sec-
tion. Hence, to find out how these requirements 
are met for the evaluation of edge detectors, 
some matching quantitative criteria are required. 
In terms of the empirical supervised evaluation 
methods these requirements mean that the main 
quantitative features of a good edge detector are a 
high percentage of correctly detected edge pixels 
(good detection level) and a high level of local-
ization accuracy (points identified as edge pixels 
should be as close as possible to the centre of the 
matching edge on the ground truth image). Note, 
that as mentioned by Canny, there is a sort of un-
certainty principle between good detection and 
good localization. Perhaps this explains the fact 
that, until now, no measure which evaluates ac-
curately both of the above features, has been de-
veloped. Accordingly, in a number of papers on 
the subject (see [13] and references thereafter), 
the considered quantitative criteria were divided 
into two classes: detection performance, or “sta-
tistical” measures and localization performance, 
or “distance” measures.
We mention here several widely used detection 
performance measures (see also [13]). Namely, let 
X be the image raster (containing N pixels), B – the 

estimated image (the output of evaluated edge de-
tector) and A – the corresponding true image (the 
ground truth edge map).Then define the type I er-
ror rate as:

,
)\(
)\(),(

AXn
ABnBA =a  

where n(S) – number of pixels in S; i. e. as the ratio of 
the number of incorrectly detected edge pixels to the 
number of non-edge pixels.
The type II error rate is defined as:

,
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)\(),(
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i. e. as the ratio of the number of non-detected edge 
pixels to the number of edge pixels.
Also, quite common are such measures as Sensitivity:
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(the ratio of the number of correctly detected edge pix-
els to the number of edge pixels) and Specificity:
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Initially, these measures were used in medical statis-
tics as measures of risk.
The mean squared Eucledian distance (mainly used 
for comparison of grayscale images) is another ex-
ample of detection performance measures as well 
as the signal to noise ratios (both pick and mean 
square).
The above measures have a wide practical applica-
tion, and at the same time their disadvantages are 
widely known. Perhaps the most significant disad-
vantage is that discrepancies between A and B are 
measured by the number of disagreements regard-
less to the pattern. For instance, errors which affect 
a small number of pixels but severely affect ‘shape’, 
such as the deletion of a linear feature, filling-in of 
small holes, etc. have high values of these measures. 
As an example, consider a test image shown in Fig-
ure 1а and a corresponding ground truth image in 
Figure 1b. We apply two edge detection algorithms 
to the test image; the results are presented in Fig-
ures 1c and 1d, respectively. 
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a)   b)   

c)   d) 
Fig. 1. a) test image, b) corresponding ground truth, c) and d) results of processing a) with two edge detectors

Here, for both algorithms, the values of type I er-
ror and Specificity are the same and are equal to 
0 and 1, respectively (all of the marked pixels are 
real edge points). The values of type II error and 
Sensitivity are equal 0.27 and 0.73 for the first al-
gorithm; for the second one they are equal to 0.36 
and 0.64. Thus, if we are guided only by the values 
of these measures in our evaluation, we must con-
clude that the performance of the first edge detector 
on the considered image is better, which contradicts 
our visual observation (and common sense). Anoth-
er practical problem for the application of detection 
performance measures is the problem of threshold 
selection in order to find the matching pixels on two 
images. Thus, a small shift in the edge map points 

of the processed image with respect to the reference 
edge map, which affects a large number of pixels but 
does not affect the shape of the pattern (e. g. we 
see the same apple on the estimated and the ground 
truth image) can lead to low values of detection 
performance measures. The above mentioned dis-
advantages of these measures should be taken into 
account for practical applications. In particular, this 
concerns the case, when the preceding edge detec-
tion step involves smoothing of the noise.
Among the measures of localization performance, 
we mention the mean error distance:
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)(
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∈
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where d(X,A)=inf ),,( axρ  ,Aa∈ and (.,.)ρ is a short-
est path length metric, see [14] and references thereaf-
ter; and the popular Pratt’s figure of merit:
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where k is a scaling constant usually set to 1/9, and 
(.,.)ρ is normalized so that the smallest nonzero 

distance between pixel neighbors equals 1. One has 
1),(0 ≤< BAFOM  and equals to 1 if and only if A=B.

The Hausdorff metric can also be attached to this 
class. It is defined as:

)}.,(sup),,(supmax{),( AbdBadBAH
BbAa ∈∈

=

Although the classical version of this measure has 
some desirable topological properties, which are de-
sirable for evaluation of image processing operations, 
it is rarely used in practice since it is very sensitive to 

‘noise’ and even to changes in a single pixel. The most 
widely used of the above-mentioned measures is the 
Pratt’s FOM.
Like the statistical measures, the localization 
performance measures show some undesirable 
features in practice. Namely, they are insensitive to 
type II errors. For example, if all errors are of type 
II, ,AB∈ then e=0, while FOM(A,B)=n(B)/n(A)= 
1- ),,( BAb i. e. the value of FOM(A,B) coincides 
with the value of specificity and provides no new 
information. The error distance e and, especially, 
the Hausdorff metric are highly sensitive to back-
ground noise. As to the Pratt’s measure, in many 
situations the FOM – optimal images had sections 
of the true contour missing, or oscillated around 
the ‘true’ contour, see [13].
Also, a striking example of behavior of FOM has 
been found by Peli and Malah [14]; it is shown on 
Figure 2.

а)      b) c) 
Fig. 2.Peli-Malah example, True picture a) and two estimated pictures b), c) with the same level of FOM =0.941.

If the image shown on Figure 2 a) (boundary of a 5x5 
pixel square) is taken as the ground truth image A, then 
the images B1 and B2 shown on Figures 2 b) and 2 c) have 
the same FOM values: FOM(A,B1)= FOM(A,B2). Such 
examples indicate, that the definition of FOM, with-
in the selected distance threshold, allows a multi-
ple-to-one correspondence between the detected 
edge pixels and the ground truth edge pixels. Note 
that in the Peli-Malah example the values of above 
detection performance measures are also the same. 
In the paper [14] a localization performance mea-
sure p

w∆ , which is an Lp modification of the Haus-
dorf metric, has been introduced:

,1

,)|)),(()),((|(
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1 1

∞≤≤
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∈
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p
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where w is a so called cutoff transform: },min{)( cttw =
for some fixed c>0. It is more robust to small pixel 
changes than the Hausdorf metric. Compared with the 
latter, it produced more reasonable results in a num-
ber of tests. For example, in the Peli-Malah example its 
values (for c=5) for the images of Figure 2 b)-c) were 
equal to 0.323 and 0.512 respectively. At the same 
time, the FOM is more robust to small oscillations of 
edge contour.
In recent years, some new measures of both above 
classes were offered for edge detector evaluation. 
They can take into account edge strength, pixel 
matching on the images as well as the displacement 
of edge pixel positions in the estimation of similarity 
[13]. These measures are also not free of disadvan-
tages. Note that unlike the above-considered mea-
sures, some of these measures are algorithmically 
complicated and their calculation is time-consum-
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ing. For example, the similarity between two im-
ages can be estimated from the cost of the optimal 
matching between their pixels, where an optimal 
matching is a matching with a minimal cost among 
all possible matchings. In order to find it, the tools 
obtained from graph theory are used. Thus, the de-
velopment of simple and reliable performance met-
rics for evaluating edge detection quality remains 
an actual task.
As to the images used within the empirical super-
vised evaluation methods, in many papers, sim-
ple artificial ground truth images, or real images 
containing sharp edges are employed. However, in 
practice, images with hard to detect contours are 
common, which limits applicability of these meth-
ods. Also, the completeness of test sets, used for 
evaluation, is an open issue for the ground truth 
based methods.
Note that in some papers (e. g. describing ROC 
curve evaluation framework, see [13] and refer-
ences thereafter) the three-valued ground truths 
were considered. In such images each pixel is 
marked as either edge, or non-edge or don’t-
count (the latter are the pixels where the edge 
status appears ambiguous). It simplifies the gen-
eration of ground truths corresponding to real 
images (e.g. on such ground truths we can attach 
all pixels forming the texture areas to the third 
class) and makes the quantitative estimates more 
informative. Also note such feature of grayscale 
pictures as uncertainty that exists in locating the 
exact position of the boundary that separates the 
object from background. Especially this is typical 
for blurred images. This uncertainty often makes 
difficult the generation of two-valued ground 
truths, containing the reference edge maps, and 
makes promising the use of fuzzy set theory for 
evaluation of edge detectors. We consider this is-
sue later in the paper.

3. Quantitative criteria  
for segmentation quality 

Prior to considering some of the currently used quan-
titative criteria used for segmentation evaluation, 
some definition of requirements to the segmented 
image is needed. As mentioned in the section 1, some 
features of “good” segmentation were formulated by 
Haralick and Shapiro in [11]:
- regions of an image segmentation should be uniform 
with respect to some characteristic (e. g. such as grey 
level intensity and texture);
- adjacent segments should have significantly different 
values with respect to the characteristic on which they 
are uniform;

- interiors of the segments should be without many 
small “holes”;
- boundaries of each segment should be simple, not 
ragged, and must be spatially accurate.
In most cases, the researchers are trying to find some 
matching quantitative criteria for these properties.
In the literature the following two main approaches to 
image segmentation are indicated:
Separation of the image into regions of similar features 
by marking their boundaries – edge-based methods 
[10] (another terms used are boundary-based and 
contour-based methods);
Clustering the pixels of an image to a set of class-
es (segments) such that pixels in the same class are 
having similar quantitative properties (region-based 
methods [10]).
For quantitative evaluation of the algorithms from the 
first class, the same criteria as for the edge detectors 
are mainly applied (see previous section). Below we 
consider some quantitative criteria used for the seg-
mentation algorithms of the second class.
Perhaps the easiest and one of the most widely used 
measures of segmentation accuracy is the percent of 
incorrectly classified pixels in the image. Obvious-
ly, this measure is similar to the statistical measures 
considered in the previous section. However, there are 
several problems associated with it:
- its value does not always agree with human observa-
tion (this is a typical disadvantage of statistical mea-
sures, see previous section);
- it does not reflect the spatial information inherent in 
the pixel misclassification. Obviously, the error on the 
border of a segment should be penalized differently 
from the error in the middle of it;
- errors in different pixel classes (segments) are not 
weighted according to their importance for segmen-
tation accuracy;
- it provides no information about which pixel classes 
are most responsible for the observed error.
To overcome the last two problems, in [15] two error 
measures, which generalize the above I and II error 
rates, were proposed. Both of them are based on the 
construction of confusion matrix. The columns of the 
matrix represent the true pixel classes, while the rows 
represent the chosen classes. Correctly classified pix-
els appear as entries on the diagonal of the matrix. 
The first of these measures is the multiclass type I er-
ror for pixel class k:
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where	  n – number of classes (dimension of confu-
sion matrix), kkC  – number of class k pixels correctly 
classified (diagonal of confusion matrix),

1

n

ik
i

C
=
∑ – number of pixels truly of class k (column total

 of confusion matrix). Here the numerator represents 
the number of pixels of class k not classified as k and 
the denominator is the total number of pixel of class k.
The second measure is the multiclass type II error for 
class k:
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– 

total number of pixels or picture size. In this formula 
the numerator represents the number of pixels of 
other classes called class k and the denominator – 
the total number of pixels of other classes.
Thus, for n image segments we get 2n evaluation 
criteria kM1 , kM 2 , k=1,2…n, which allow to ana-
lyze the contribution of each segment to the overall 
error. Besides that, as noted in [15], the confusion 
matrix may be weighted according to the impor-
tance of each type of pixel misclassification. How-
ever, in this paper, no concrete weighting procedure 
has been proposed. Note that the contribution of 
different segments to the segmentation accuracy 
can be formalized by using the elements of fuzzy 
logic. This formalization involves the construction 
of fuzzy ground truth images and the use of fuzzy 
performance measures (see the next section).
Another statistical measure of segmentation accu-
racy based upon the count of misclassified pixels 
and using the Bayesian approach, was introduced in 
[16]. In this paper, the probabilities for an arbitrary 
pixel of segmented image to belong to a foreground 
object and to the background, are calculated. Using 
these probabilities, the probability of overall seg-
mentation error is derived:

),|()()|()()( bopbpobpoperrp +=

where )(),( bpop – are   a priori probabilities for a 
pixel to be classified as a foreground object, or as 
a background, respectively. Both are standard geo-
metric probabilities calculated from the ground 
truth image. Also, )|( bop  – is the probability of 
an error for a background pixel to be labeled as an 

object. It is defined as the ratio of the sum of back-
ground pixels labeled as an object to the sum of true 
background pixels. Finally, )|( obp  –  is the prob-
ability of an error for an object pixel to be labeled 
as the background; it is defined similarly as above. 
Later, this formula was extended to the case of multi 
class segmentation.
The above formula based upon the count of mis-
classified pixels does not take into account the lo-
cation of such pixels with respect to their “wrong” 
segments. Obviously, the higher the corresponding 
distances are, the worse is the segmentation quality 
and, therefore, the higher it should be penalized.
In the above mentioned paper [15], the following 
measure, which takes these distance criteria into ac-
count, was proposed:
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where	 N – the number of misclassified pixels,	
A – the area of the picture (total number of pixels), 
di – for the i-th misclassified pixel, the Eucledian dis-
tance to the nearest point in the “true” picture actually 
of the misclassified class.
Clearly this measure is similar to the localization 
performance measures considered in the previous 
section. Thus in [15], for the evaluation of seg-
mentation algorithms, the measures of both above 
classes were used: the statistical and the localization 
performance measures. This approach corresponds 
with our evaluation method, which we consider in 
the next section.
The Pratt’s measure, considered in the previous sec-
tion, was utilized for the segmentation quality evalu-
ation task. One of such versions can be written as [17]:
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where Ne – the number of misclassified pixels, 
di – same as in the above definition of ε, and g – a scal-
ing constant. It is easily seen that a correct segmenta-
tion yields FOMe=1.
For performance evaluation of the image segmenta-
tion algorithms, in addition to the statistical measures 
and the measures of localization performance, some 
other quantitative criteria are also used. Obviously, 
one of the features of a correct segmentation is that 
the evaluated image and its ground truth counterpart 
should have the same fragmentation level (the number 
of their segments should coincide). To evaluate this 
feature, the following measure was introduced in [17]:



Image Processing, Pattern Recognition

KOLTSOV PP et al… COMPUTER OPTICS, 2015; 39(4): 542-556.

550

,
)(1

1
ba IR nn

FRAG
−+

=

where	 nR  –  the actual number of segments (on 
the estimated image),  nI – the number of segments 
on the corresponding ground truth, a, b – scaling 
parameters (in [17] a=0.16, b=2). The parameter 
a determines the contribution of a deviation of 
nI and the parameter b   determines the contribu-
tion of large deviations relative to small deviation. 
However, this measure takes no account of the 
characteristics of the segments. Due to this reason, 
in the same paper, another measure - FOC (figure 
of certainty) was considered. For its calculations, 
one such characteristic, namely the grey level in-
tensity, is used:
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where	 N – the number of pixels,	 fi  – the 
grey level of  i-th pixel in the test image, jm –  the 
representative grey level of the corresponding seg-
ment (after segmentation), δψ ,  – scaling parame-
ters (which have the same purpose as a and b in the 
previous formula). In the simplest cases, then the 
image consists of several regions of cons tant grey 
value, the expression (fi  – mj) represents the differ-
ence between the grey value of the “true” region of 
i-th pixel and the value of the corresponding region 
after segmentation. This measure can be generalized 
to the case of inhomogeneous (with respect to grey 
level) regions. Also, instead of the grey level values, 
another quantitative characteristic of the segments 
can be taken (e. g. their texture characteristic).
Another class of performance measures concerns 
the accuracy with which the characteristics of the 
segments can be determined. As known, image 
segmentation is one of the initial stages of image 
analysis. The goal of segmentation is to provide a 
convenient way to measure the features of image 
objects. This measurement, in turn, is the ultimate 
goal of image analysis, and it is heavily dependent 
on the results of segmentation. Thus, taking into 
account this ultimate goal, it seems reasonable to 
evaluate the segmentation quality by comparing 
the measurement of such features on the segment-
ed and the ground truth images. In the paper [18] 
two criteria based on this approach were offered: 
AUMA (absolute ultimate measurement accuracy) 
and RUMA  (relative ultimate measurement accu-
racy):

.fff SRAUMA −=   ,100×
−

=
f

ff
f R

SR
RUMA

where Rf  –  the value of feature f, (geometric, color 
or texture) obtained from a reference image, Sf – the 
feature value measured from the segmented image. 
In fact, we have 2P criteria, where P is a number of 
segments’ features. The values of AUMA and RUMA  
are inversely proportional to segmentation quality: the 
smaller the values, the better the results. These crite-
ria can be used to evaluate the importance of different 
features to the accuracy of segmentation and, there-
fore, to image analysis.
The above considered criteria of segmentation accura-
cy are integral part of the empirical supervised evalua-
tion methods and they are based on comparison of the 
segmented image with the ground truth segmentation. 
Unlike the latter, the empirical unsupervised evalua-
tion methods are based not on comparison with the 
reference segmentation, but on some subjective char-
acteristics of “good” segmentation. The criteria used 
by this methods, are aimed at evaluating such desir-
able characteristics. Here, the absence of need in the 
reference images has some potential advantages. For 
example, it allows one to make the evaluation of seg-
mentation algorithms online. This online evaluation 
enables one to adjust the algorithm’s parameters on 
the fly, depending on the intermediate results; or to 
decide about the termination of iterative segmentation 
after achieving the desired accuracy.
We may mention the following three main groups of 
unsupervised criteria, aimed to evaluate the following 
features of the segmented image:

■■ uniformity of the segments;
■■ grey level difference between adjacent segments;
■■ shape of the segments.

In practice, however, the quantitative performance 
measures based upon these criteria often produce less 
adequate results than the ground truth based mea-
sures. Besides that, the above criteria are subjective, 
and therefore their formalization is difficult to carry 
out. Hence, the empirical supervised evaluation meth-
ods are nowadays more reliable than their unsuper-
vised counterparts. In recent years, some complex 
measures taking into account several of the above cri-
teria (e. g. uniformity of the segments and their num-
ber) have been offered (see [19] for details).
It should be noted that until recently, no substan-
tial comparative study of various segmentation 
evaluation criteria had appeared. In the available 
papers, either a limited set of test images is con-
sidered, or the criteria of the same class, which 
study the same features of segmented images, are 
studied. This fact indicates that the development 
of comparative evaluation methodology remains 
an actual task.
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а)  b) 
Fig. 3. Examples of images from PICASSO database: а) Degenerating Ridge, b) Degrading Junction

4. Some features of EDEM method  
and PICASSO program system

Nowadays, at the Scientific Research Institute of 
System Analysis (SRISA RAS), the software system 
PICASSO (PICture Algorithms Study SOftware), 
aimed for comparative evaluation of image pro-
cessing and image analysis algorithms, is been de-
veloped. The aim of such activity is to create a tool 
for design of adaptive image analysis systems  for a 
wide range of practical applications. Originally this 
system was designed to compare various edge detec-
tion algorithms (now this is the most advanced part 
of the system). Its further versions evaluate a wider 
range of methods including image restoration, tex-
ture analysis and image segmentation. The current 
version of the system contains a large set of images 
as well as a set of corresponding reference imag-
es, a texture database, an image editor, a number 

of noise generators and filters, filling templates for 
background  and some other components.
The ideological basis for this system is EDEM (Em-
pirical Discrepancy Evaluation Method), which is 
also under development. Due to variety of applica-
tion of the algorithms under evaluation and to the 
fact that some theoretical aspects of these applica-
tion areas have not yet worked out (for instance, 
there is no precise definition of the segmentation 
problem, see [20]), the analytical methods are not 
used here. In the initial version of PICASSO system 
intended for testing edge detectors, we worked out 
a set of synthetic grayscale images. These synthet-
ic images simulate a collection of situations, which 
are difficult in some sense for edge detection (see 
Figure 3а-b as an example). Here the difficulty is 
caused by the presence of areas of varying contrast. 

The testing procedure comprised the following steps:
■■ Selection of an algorithm or a group of similar al-

gorithms for testing. 
■■ Selection of the test images and their correspond-

ing ground truths.
■■ Selection of the algorithms’ parameters. In par-

ticular, if the algorithms have a similar input param-
eter, such selection should enable one to make a joint 
graphic representation of performance of these algo-
rithms (in terms of a certain measure) with respect to 
this parameter.

■■ Choice of distortion methods for the test images. 
For example, different methods for adding noise to the 
images can be used. It is desirable that these methods 

depend on the parameters suitable for graphical repre-
sentation (e.g. noise deviation).

■■ Selection of quantitative performance measures.
■■ Statistical processing of testing results.

This approach was applied for performance test-
ing of several edge detectors on noised and blurred 
images [21]. Namely, in this paper, the algorithms 
of Canny, Rothwell, Heitger, Black, Iverson and 
Smith, different by their nature and designed for 
solving the same problem, were taken. In all tests, 
the default values of the algorithms’ parameters 
were used. The variance of Gaussian noise and the 
width of the blurring window were used as distor-
tion parameters. As the performance evaluation 
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а)   b)  
Fig. 4. Pictures corresponding to Figure 3a: а) ground truth image, b) simplified version

criteria, the above considered Sensitivity and Spec-
ificity were taken. Several meaningful results were 
revealed after testing. One of them is the possibility 
in principle to automatically compare the results of 
testing. Also, the graphical representation of results 
[21,26] allows one to perform a qualitative analysis 
of the algorithms.
Besides that, the statistical processing of results 
(the values of performance measures) revealed that 
the algorithms of Canny and Rothwell showed the 
best performance, whereas the algorithm of Iverson 
was the worst performer of the six algorithms. At 
the same time, such testing method has several no-
table disadvantages. As mentioned above, the use of 
only statistical measures (Sensitivity and Specificity 
in our case) gives little information about the abil-
ity of edge detectors to preserve the shape of con-
tours which separate the objects in an image from 
background. The use of test images containing only 
situations which are difficult for edge detection is 
typical for worst case testing (see section 1 above) 
and therefore has typical disadvantages of this test-
ing approach. In particular, such approach does not 

take into account the variety of real-life situation. 
Finally, this testing methods contains no attempts 
to separate the flaws of the algorithms, from the prob-
lems with their software implementations.
Partly these disadvantages of the initial version of 
EDEM have been overcome with further development 
of the PICASSO system. We mention here the paper 
[22], dealing with the stability study of edge detection 
under affine transformations (shifts, rotations and 
scalings) of the objects being tested. This research 
is essential for identifying objects of in advance 
unknown size and orientation. In that paper, the 
same six edge detectors as in [21] were tested. The 
changes in testing method affected both test imag-
es and performance measures. Namely, in addition 
to the images containing difficult situations for 
edge detection, their simplified versions were tak-
en. As an example, a simplified version of Degen-
erated Ridge (Figure 3a) is presented on Figure 4b. 
This simplified picture contains the edges of con-
stant contrast value (average value of its original 
counterpart). 

As to performance criteria, alongside with Sen-
sitivity and Specificity the Pratt’s FOM (local-
ization performance measure) was used. Also, 
the metric of Hausdorff was taken as auxiliary 
measure. The test results showed that two of the 
six algorithms displayed an unstable behavior 
on the simplified test images. Another four al-
gorithms showed acceptable results (confirmed 
by visual inspection). At the same time, based 
on these performance criteria, it is impossible 
to find the “best” algorithm. Also, it was noted 
that in some cases for two algorithms applied 

to the same test image, the values of all the 
measures were practically identical except for 
the Hausdorff metrics (and visually the perfor-
mance results were identical). Here the Haus-
dorff metric played a role of magnifying glass 
which allows one to see the difference between 
two pictures undetectable by other means. Thus, 
the use of this metric in combination with other 
performance measures can be useful (in partic-
ular, it rejects the claim made in [14] that the 
Hausdorff metric is “practically unusable” for 
the performance evaluation task).
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a)  b) c) 

  d) 
Fig. 5. Results of processing Degrading Junction (Figure 3b)  

and its 45 degree rotation by Smith detector: 
 a)  b) original picture  

c) - d) simplified picture.

On the initial images containing edges of varying 
contrast, the performance of all six algorithms was 
significantly worse (as also confirmed by visual as-
sessment). A corresponding example is given on 
Figure 5.
The paper [22] also contains some simple tests 
aimed at finding problems of software implementa-
tions of the tested algorithms. In one of such tests, 
the algorithm’s performance results on a given im-
age and on its rotation by 180 degrees were com-
pared (obviously, for reliable software implemen-
tations, these results should be close to identical). 
For the Canny algorithm, the results of this test were 

worst among the tested edge detectors. Taking into 
account the high popularity of the latter (or in oth-
er words using the previous testing experience), a 
natural conjecture was made that the source code of 
this algorithm contains some flaws. To prove that, 
instead of this software realization, the MATLAB 
implementation of this edge detector was taken, and 
for this version the results of such tests were one of 
the best among the tested algorithms.
Thus, changes in the testing method such as match-
ing two types of test images and two types of per-
formance measures led to improvement of quality of 
evaluation and allowed to obtain new practical re-
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sults. For example, if the location and size of a cer-
tain object in an image are not known in advance, 
and the contrast level along its boundaries is con-
stant, then for finding the contours of such object, 
four of the six edge detectors with default values of 
their parameters can be applied. In the case of vary-
ing contrast level, the use of all six algorithms is not 
recommended (at least, a procedure for tuning the 
algorithm’s parameters is required).
As noted in section 2, grayscale images are inher-
ently fuzzy in nature due to the uncertainty which 
exists in locating the exact position of the bound-
ary which separates the object from background. 
Also, in processing of remote sensing images, due 
to insufficient resolution of the sensor, often it is 
difficult to assign some pixels to one pure class (e. 
g. to the “forest”, “water”, or “urban land”). This 
uncertainty leads to the thought of using elements 
of fuzzy set theory in image processing and anal-
ysis. In particular, it concerns such tasks as edge 
detection and image segmentation. In recent years, 
there is a growing number of algorithms handling 
these tasks as well as image restoration, boundary 
improvement and texture analysis, which rely on 
fuzzy logic. Evaluation of these algorithms required 
a modification of EDEM (see [13], [23] for details). 
This modification improved the quality of testing 
for traditional algorithms which do not use fuzzy 
logic. Moreover, it enables to compare simultane-
ously both “fuzzy” and “non-fuzzy” algorithms.
It should be noted that methods of comparative eval-
uation of these two types of algorithms have not been 
properly developed until now. In some papers about 
the analysis of remote sensing images, some statistical 
performance measures (similar to the measures con-
sidered in the previous section) were generalized for 
fuzzy case. In particular, these measures allow one to 
compare fuzzy sets with respect to their crisp counter-
parts. Such measures were called in [22] fuzzy simi-
larity measures. Also, in [22] the concept of a fuzzy 
ground truth image was considered. Although these 
papers were directed at aerial image classification, 
some of their results can be applied as well to compar-
ative evaluation of edge detectors. This observation 
resulted in a paper [23].
In this paper, the fuzzy ground truth images used for 
testing edge detection algorithms were identified with 
membership functions of edge class, which for each 
pixel of a given test image takes the values from 0 to 
1. The ordinary ground truths containing the refer-
ence edge maps were identified with the character-
istic functions of the pixels forming these edge maps 
(taking the value 1 for edge pixels and 0 otherwise). A 
fuzzy ground truth used for image segmentation qual-

ity evaluation can be identified with a set of member-
ship functions of the reference segments.
One of the new features of EDEM offered in [23] is 
that depending on the specific feature being tested, 
different fuzzy ground truths corresponding to the 
same test image can be used. For example, one fuzzy 
reference image can be used to test the detection of 
weak edges, and another one - to test the ability to 
generate continuous edge contours (its membership 
function is sensitive to the gaps in the edge map).
Another promising application of these fuzzy ground 
truths is that they can be used to study the ability of 
edge detectors to find image feature points (for ex-
ample, the corner points of a rectangular). In par-
ticular, the knowledge of these points is important 
for the edge linking procedure. Assigning the higher 
values of the membership functions to these pixels 
compared to the other pixels on the ground truth 
edge map, we get the higher values of fuzzy similar-
ity measures when such pixels were marked as edges 
by the tested algorithm. Note that the use of fuzzy 
ground truth images can be also useful for testing 
image segmentation algorithms. At present, we are 
developing a method of generating various fuzzy 
ground truth images for their use in evaluation of 
image processing algorithms, and we study the appli-
cability for this purpose of different fuzzy similarity 
measures.

5. Conclusions
In last two decades, the problem of performance eval-
uation of image processing algorithms has received 
a growing interest in the literature. Since the general 
theory of image processing and analysis is not com-
pleted so far, the analytical evaluation methods have 
a limited application restricted to some special cases. 
Nowadays the priority is given to the empirical meth-
ods which use the ground truth images for evalua-
tion (supervised methods), as well as to the empirical 
methods where such images are not required (unsu-
pervised methods). The first of these methods pro-
vide more accurate evaluation than the second ones, 
whereas the latter can be applied to real-time software 
for evaluating the algorithms online.
The current version of our method EDEM, aimed at 
empirical evaluation of various computer vision algo-
rithms, has the following main features:

■■ Use of “difficult” test images for the evaluated al-
gorithms.

■■ Matching these images with their simplified ver-
sions.

■■ Use of performance measures from different classes 
for quantitative evaluation of the algorithms (e. g. the 
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use of statistical and localization performance measures 
for comparative evaluation of edge detectors).

■■ Possibility to evaluate qualitatively the results of 
tests (e. g. their representation in graphical form).

■■ Application of elements of fuzzy logic, including 
the concept of fuzzy ground truths. The use of several 
fuzzy ground truth images for the same test image for 
the purpose of more profound evaluation. Utilizing 
existing fuzzy similarity measures for the evaluation of 
computer vision algorithms.
Our method found several practical applications (its 
latest application is the design of a software system for 
automated blood cell image segmentation, [24]-[25]). 
At the same time, there are some open issues concern-
ing the general methodology of comparative evaluation, 
as well as the EDEM method itself (see [26] for details). 
For example, a significant difficulty appearing during the 
evaluation process is how to select a proper performance 
measure giving a reliable assessment of the performance 
of the algorithms. Most of the measures used in practice 
evaluate reliably only a certain feature of the tested al-
gorithms, and no all-inclusive evaluation criteria exist. 
Thus, the design of reliable performance measures and 
their matching within one testing method remain actual 
issues. Especially it concerns the matching of the mea-
sures of the same class (e. g. localization performance 
measures). The use of several such measures inevitably 
leads to the question of their proper ranking (which one 
is most reliable). During our tests within EDEM, we 
found that the Hausdorff metric can be used as a second 
(auxiliary) localization performance measure for eval-
uation of edge detectors and image segmentation algo-
rithms [20], [22].
As for the methodology for application of test im-
ages and the corresponding ground truths, one of 
the main open questions here is the completeness 
of the test set. Within our method, the selection of 
test images is practical task-based. For example, for 
testing edge detection algorithms, the edge density 
in the test images should correspond to such density 
in the real images, to which the tested algorithms 
are supposed to be applied. Accordingly, we are de-
veloping a technology for generation of such test 
images in the current version of PICASSO system. 
Also, we are developing a method for generation 
of various fuzzy ground truth images as well as 
a method of using several fuzzy similarity mea-
sures to make practical evaluation. Finally, our 
experience in the comparative evaluation shows 
that in some cases it is impossible to choose the 
absolute best algorithm on the basis of the values 
of performance measures; and at the same time 
there are several algorithms with similar (accept-
able) results. In these situations, to choose most 

suitable algorithm for practical applications, one 
should take into account such its properties as 
processing complexity, resource efficiency, par-
allelizability, etc. These properties are studied by 
analytical evaluation methods. We are planning to 
work out a method for the evaluation of such fea-
tures in the future versions of our system.
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